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The statistical properties of the delay time matrix for a simple, tractable model describing multichan-
nel resonance scattering are studied. The cases of one to many open channels are examined first for a
single resonance, and then for multiple resonances, including the limit of overlapping resonances. Nu-
merical calculations for the delay time and its statistical properties in more complex yet realistic cases

involving energy averaging are reported and analyzed.

PACS number(s): 05.45.+0b, 24.60.—k, 24.30.—v

I. INTRODUCTION

There is a growing interest, ranging from nuclear to
molecular physics, in understanding the manifestations of
the chaotic behavior of quantum scattering systems.
When the scattering is irregular in some sense, stochastic
descriptions are appropriate. It is therefore worthwhile
to investigate statistical properties of models where
analytical results are available, as a reference and guide
for more realistic cases and with the expectation that
features of these properties are universal or generic [1].
Recently several such models whose dynamics are com-
pletely chaotic have been examined [2]. It is our aim here
to study tractable multichannel scattering models sup-
porting a mixture of regular and chaotic dynamics, as is
typically the case in physical and chemical processes.
Specifically, we shall focus on the properties of Smith’s
Hermitian “lifetime” or delay time matrix [3].

ds(E)f

dE (1)

Q(E)=i#S(E)

in suitably chosen ensembles of scattering S (E) matrices
[4]. Only diagonal elements will be considered since non-
diagonal elements have no direct physical meaning.
Q(E),, is interpreted as the average delay time experi-
enced by a particle injected in channel a at energy E [5].
In the following the energy argument will be generally
omitted.

Ours is not the first study of statistical properties of the
delay time, but it differs from earlier work in significant
ways: We focus on the delay time distribution, deriving
and analyzing general expressions within the framework
of a particular unitary S-matrix model; we evaluate our
results analytically in standard limiting cases and numeri-
cally for other cases; we consider the implications of
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“double averaging” over ensembles of statistical model
parameters and/or over a distribution of total energy.
Delay time properties arising from statistical models for
the scattering matrix have been studied previously and
include the mean, the mean square deviation, and sum
rules for overlapping and isolated resonance [6—9]. In
the special case of decay of a “prepared” compound state
arising from a sufficiently broad incoming wave packet,
the distribution of delay times has been shown to be ex-
pressible as the Fourier transform of the energy auto-
correlation function of the S matrix [8-10]. A systematic
study of the relationship between our results and earlier
work on delay time properties lies beyond the scope of
the present paper and is left for future work. A limited
number of obvious connections to other results is made at
appropriate places throughout the paper.

An example of the type of behavior we wish to charac-
terize is provided in Fig. 1, which depicts the energy
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FIG. 1. Unaveraged Q,, in atomic units (a.u.) versus € /I for
I'/D=10, N =30, D=1 a.u., and a particular set of n =20000
resonances chosen at random according to the procedure de-
scribed in Sec. V. The energy € is E —nD /2, where nD /2 is ap-
proximately the center of the interval used in the numerical
simulation; the same convention for & applies to Figs. 2—4.
There are approximately 200 resonances in the section of energy
shown in the plot, but a much smaller number of peaks in Q,,.
The values of the amplitudes y* are taken randomly from a
Gaussian distribution as described in Sec. ITI.
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dependence of a diagonal element of Q as obtained from a
Breit-Wigner model for the S matrix. The model is de-
scribed in Sec. II; specific details are provided in the
figure caption. The essential feature of Fig. 1 is the irreg-
ular dependence of the delay time on energy: the energy
range of the abscissa contains approximately 200 overlap-
ping resonances of which the only remnants are the fluc-
tuations associated with the 12 maxima and the 12 mini-
ma.

While it has been recognized that chaotic scattering is
well characterized by the “circular orthogonal”” ensemble
of S matrices, these ensembles do not contain the energy-
dependent information necessary for finding the statisti-
cal properties of Q [neither the derivative in (1) nor
“two-point functions,” i.e., moments depending on two
energies, can be evaluated]. The same limitation applies
to the maximum entropy ensembles [11]. The required
ensembles must contain energy-dependent information.
A possibility is to assume a ‘“Gaussian orthogonal” en-
semble of model Hamiltonians and, through their corre-
sponding S matrices, obtain the proper statistics [12,13].
This program has been performed in part and has yielded
average values for Q in the overlapping resonance regime
[14]. But when higher moments are required, as in the
autocorrelation function of Q, which involves four S (E)
matrix elements, the technical difficulties are formidable
[13,15]. Another possible approach would use the semi-
classical S matrix [16] to link classical irregular scatter-
ing to the corresponding quantum scattering [17]. How-
ever, the energy-dependent information required for the
delay time autocorrelation function is lost when imple-
menting this standard semiclassical treatment. More-
over, any assumption about properties of the classical de-
lay time, such as the exponential and power-law distribu-
tions introduced in Refs. [17] and [18] to obtain the semi-
classical S matrix autocorrelation function for hyperbolic
and nonhyperbolic classical scattering, respectively, must
certainly be avoided in an a priori semiclassical derivation
of the analog of the corresponding quantum distribution
of delay times.

This has motivated our search for simple, tractable
models that retain the basic features of the more rigorous
random matrix theory. Our model relies on a resonance
description of an intermediate collision complex. The oc-
currence of resonances in nuclear reactions has been
recognized for some time and has been exploited to devel-
op compound nucleus models [19]. In chemical reactions
there is growing computational evidence that resonances
are ubiquitous and influence the reaction dynamics [20].
Asserting the intimate association between resonances
and chaotic behavior, our approach rests on the basic
model describing quantum resonances, namely, the
Breit-Wigner model [21]. The path followed in the
present paper is to specify our model for the scattering
matrix and discuss the implications in Sec. II. We then
characterize in full detail the statistical properties of the
delay time associated with a single Briet-Wigner reso-
nances for an arbitrary number of open channels, with
fixed resonance parameters (Sec. IIT A), and subsequently
extend the results in various directions, such as varying
widths (Sec. III B) or multiple resonances (Sec. IV), by

imposing the necessary simplifying assumptions to keep
the model solvable, even though some of them may be
unrealistic for a generic case: Most prominently, an in-
dependence condition between the various resonances is
enforced. Finally, we consider more complex cases, in-
volving averages over sets of resonance energies (hence-
forth denoted configurations) or over total energy, and re-
port the results of numerical calculations thereof, in Sec.
V. The paper concludes with a discussion in Sec. VI.

The use of an ensemble in the single resonance case
rests on the possibility of examining either many
different, isolated, resonances in the same system or indi-
vidual resonances from a family of systems differing by
the value of some perturbative parameter. Averaging
over a large number of channels (for a selected system
and energy) also justifies the statistical treatment. In gen-
eral, when many resonances are present one may consider
different averages, over energy or configurations, and it is
important to know the relationship and/or possible
equivalence of these averages. This aspect is addressed in
Sec. V.

II. MODEL FOR SCATTERING MATRIX

Assume the following structure for the scattering
operator S with multiple (n) resonances (see, e.g., [22]):
n id (A)

S=S(E)=1—-F —*—— . 2
£ EIE—EAHFA/z @

This corresponds to a set of Breit-Wigner resonances
with a collective background of unity. The case of non-
unit background is discussed in Appendix A, where it is
shown to have no effect on our final results. Threshold
effects are neglected so that the number of channels N is
constant for the range of energies of interest. It is as-
sumed that all parameters are independent of energy and
that the resonances are independent, i.e., for A=A/,

A(K)A(A')=O . (3)

By imposing unitarity on S, one finds that the operator
A™ is Hermitian,

AW = gt (4)
and that it is related to T,
A(?»)A (A) — A(k)rA . (5)

Furthermore, if the system is invariant under time rever-
sal, S is symmetrical for a suitable choice of asymptotic
states. This implies that A4 is symmetrical and, for a non-
degenerate metastable state, it therefore factorizes

AR =yPyH . 6)

Because A is Hermitian and symmetrical the yff‘)’s can be

chosen to be real. They are the amplitudes that connect
the channel a with the resonant state. A discussion on
the origin of this condition and the extension to complex
values is provided in Appendix A. Combining conditions
(5) and (6) one finds



51 STATISTICAL PROPERTIES OF THE DELAY TIME MATRIX

0L=3M?. %)

The condition of “independent resonances” (3) is of
course an unrealistic assumption in general. Indeed, for
the case of a single open channel, the joint distribution of
the resonance energies and widths has been obtained
analytically for a unitary S-matrix model arising from
statistical treatment of an effective non-Hermitian Hamil-
tonian [23]. The treatment of Ref. [23] reveals that reso-
nance widths and energies are, in general, both in-
tracorrelated and intercorrelated. There are, however,
physically interesting cases where an independent reso-
nance assumption does lead to reasonable results. An ob-
vious case is the regime of well resolved resonances in
which the poles do not mutually affect each other. Also,
in the many overlapping resonances limit, the correlation
effects between different resonances (““level-level” correla-
tions) are frequently neglected on statistical grounds
[24-26], although this assumption is not necessarily con-
sistent with unitarity of the S matrix [27,28]. The ab-
sence of correlation between levels is here enforced at the
“microscopic level,” i.e., in the form of the S matrix,
rather than statistically, so that all members of the S ma-
trix ensemble are unitary.

From a more technical point of view, our model corre-
sponds to the simplest possible case in the general param-
etrization proposed by Simonious for a unitary S matrix
with an arbitrary number of poles [29]. (In his notation,
defining the projector P, by 4¥=T,P,, the proposed
structure corresponds to P, P} =8§,,..) We shall return to
this point later.

Completion of the model (2) for S requires specification
of E,, A=1,...,n, and yf,}‘), A=1,...,n;a=1,...,N.
In all cases considered here, the y’s are treated as sto-
chastic variables in a manner described in Sec. III. In
Secs. III (single resonance) and IV (multiple resonances)
results for the delay time are obtained and analyzed with
the resonance positions E; fixed. In Sec. V the latter
constraint is dropped and the E,’s are selected from the
Gaussian orthogonal ensemble. The set of parameters
I'y, A=1,...,N is determined by selecting the ¥’s
without constraint and then applying (7), or the I'’s can
be fixed and (7) used as a constraint in the selection of the
7’s both cases are considered in Sec. III.

III. SINGLE BREIT-WIGNER RESONANCE

Throughout this section the resonance position, denot-
ed E,, is fixed; the fixed and the variable I" cases are con-
sidered separately. For a single resonance (n =1), the S-
matrix expression (2) reduces to

iA

ST g it 2

(8)
with
r=yv2. )
’ A. Fixed width

Here we fix the value of I" and treat the y’s as stochas-
tic variables. What is the proper ensemble of S matrices
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compatible with unitarity and given values of I" and E,?
Since the only variables are the y’s, the least biased
choice is a distribution as homogeneous as possible, sub-
ject to the constraint (9). Although the general N-
channel case could be directly described by making use of
N-dimensional spherical geometry, it is a rewarding exer-
cise to proceed by induction from one to many open
channels. The distributions found for small N (N <5) are
peculiar and differ qualitatively from the ones for higher
values of N. Also, the reader will have a better ground
for understanding the general coordinate system and re-
sults. The one-open-channel case is trivial in that there is
only one member in the ensemble and ' =2,

1. Two channels

For two channels, labeled a and b, (9) is the equation of
a circle of radius VT. The ensemble is chosen to be a
homogeneous distribution of points on the circle. Writ-
ing

v.=T"%ing ,

vy =T""cos¢ , (10)
we have
P2(¢)=$ (11)

as the probability density for the angle ¢. Equations (10)
and (11) enable us to find arbitrary moments {(y7y?);
m,n=0,1,2,... ({ ) denotes an ensemble average) by
integrating over the angle between O and and 27. In par-
ticular

(y™y2)>=0, m and/or n=o0dd , (12)
2y I 4y 3T
(y*) 2,<y> s (13)
2
<7’§?’%>=—1;— , (14)

where the absence of subscripts in the second- and the
fourth-order moments denotes that the expressions are
valid for arbitrary channels. Clearly, the joint distribu-
tion for ¥, and y, is not Gaussian, as there is a correla-
tion between y, and v,, {¥2y2)5#(y2){¥2). This dis-
tribution can be explicitly obtained, e.g., by multiplying
the marginal and the conditional distributions, but is not
required for present purposes. For finding the distribu-
tions of the delay times, it is useful to write Q,, in a com-
pact form
. dSa,
Qaa =i# % Sau dE

—ifilyt+iyH(E—Ey +iT/2)+v2y2]
[(E—Ey)?+T%/4[(E —E,—iT/2)
#iy’

= , 15
[(E—Ey)?+T2/4) 1%

where u =a,b and in general represents an arbitrary
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channel. The first two terms in the second line corre-
spond to the diagonal contribution u =a and the third
one to the nondiagonal one ¥ =b. The constraint (9) is
used to obtain the last equality. Note that this result is
independent of statistical averaging and is a direct conse-
quence of the proposed structure of the unitary .S matrix.
Since only diagonal elements of the lifetime matrix are
treated here [30] and all have the same functional expres-
sions (15) and statistical properties, we shall use the nota-
tion g for the values allowed for diagonal elements Q,,.
The distribution of g for two channels P,(q) is then found
to be

_ 1 2w _ A S
Pz(q) r fO d¢ S(q 9m COS ¢) 7T(qqm _q2)1/2 ’
(16)

where g, is the maximum value that ¢ may take; this
occurs when all y’s are equal to zero, except the one for
the channel of interest. According to (15),

g, =(#0)/[(E —Ey)*+T?%/4] . (17

2. Three channels

For three channels the constraint (9) is the equation of
a sphere of radius ['!/2, In spherical coordinates the am-
plitudes are given by

y.=T"%in¢ sing ,
vy =I"1"2cos¢ sin6 , (18)
y.=TI"2cos6 .

Assuming a uniform distribution over the sphere, the
probability distribution of angles is
_ sin6

41

P,(¢,0) (19)
The expression for g now is identical to the one for two
channels, Eq. (15), as a result of partial cancellation be-
tween diagonal and nondiagonal contributions making
use of the constraint (9). Indeed Eq. (15) is a general re-
sult independent of the number of channels; see the
derivation of (50) below.

The distribution of g is

=L 2 T . . 2
Pi(q) - fo d¢f0 d0sinf 8(q —q,,cos“0)

1
= e (20)

where channel ¢ [see (18)] has been used in the integral
for convenience. The result does not depend on this par-
ticular choice because of the spherical symmetry.

3. Four channels

Examination of the four-channel case will allow us to
write the general N-channel equations by induction. Ac-
cording to (9), the ensemble points are now constrained
to a hypersphere of constant “radius” I''/2. The ap-
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propriate coordinates are a generalization of standard
spherical polar coordinates [31].

y.=T"%sin¢ sinfsiny ,
vy =T1%cose sin@siny ,
y.=T12cosOsiny ,
va=T"?cosy ,

where 0=<¢=<2mw, 0=60=7, and 0<y=w. The ortho-
gonality of this system can be explicitly checked by com-
puting the direction cosines in analogy to the three-
dimensional case [32]. The scale factors h,=3 ,(dy,/

d&;)?* (where u=a,b,c,d and &,=T'%¢,0,y for
i=1,2,3,4, respectively) are
hlzl,
h,=T1%inBsiny ,
(22)
hy=T"2iny ,
hy=T1"

The differential element of hypersurface is then given by
dS,=hyshgh,d¢ d0dx=T%infsin’ydpd0dy , (23)

and by integrating over the angles we obtain the total hy-

persurface “area” S,=27°I'32, The distribution of an-
gles is
. . 2
Py($,0,x)= -—szj:;’ L (24)

The probability density of g is computed, as in the N =3
case, using the channel whose corresponding amplitude
has only a cos function in polar coordinates, channel d in
the present case:

_ 1 27 T T . . 2
Pp="— J7ds [ a6 [ "dxsin6sin’y
X 8(q —g,,cos*x)

—_2 PRV VZ) 25
ﬂ_qm(qm/q )72, 25)

4. N channels

In view of the above results we are ready to write gen-
eral expressions for N open channels. When an extra
channel is added, the appropriate N-dimensional spheri-
cal coordinate system is constructed by multiplying the
N —1 coordinates of the previous set by the sin of a new
angle £y, varying between O and 7. The remaining Nth
coordinate is given by I''’’cosf,. Using the notation
{&},i=1,...,N, for the set of N spherical coordinates,
with §,=T12 &,=¢, £,=0, £,=Y, and so on, the scale
factors take the form

hi=1,
hy=T'2sing, - -sinfy (J=2,3,...,N—1), (26

hy=T".
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The Jacobian &y of the transformation from Cartesian to
polar coordinates {y}— {&} is the product of the N scale
factors

N
&N= F(N—l)/?. H sinJ—Zé-J 27
J=3

and the differential of (N —1)-dimensional space avail-
able for the ensemble points (dSy = [I-,h4;) will be pro-
portional to

N
Fy=1]] sin’ 2%, . (28)
J=3

The normalization constant for the homogeneous distri-
bution Py({&,, ... ,Ex]})=CxFy is therefore

Cy=[[Tas [Tag, - [Tagnry ] @9

Thus each new added channel (for N > 2) contributes to
the normalization constant a factor

1 _ G(N/2)
fo”sinN*ZgngN T 2G (N —1)/2]

where G is the Gamma function. This gives for the con-
stant Cy

cy= , (30)

G(N/2)

Cn= 2N 72

(31)
Combining the above results, the general expression for
the probability distribution of the angles is

G(N/2)

BN Hsm 2%, . (32)

Py(&s, ..., EN)=

Note the independence with respect to §,=¢. From this
expression a general formula for arbitrary even moments
{(¥?) can be obtained (odd moments vanish). The first
two of these moments are required for evaluating the
average of ¢ and its autocorrelation function. It is con-
venient to use the amplitude corresponding to the Nth
channel, the result being, however, independent of the
particular channel

<72V>=f02”d¢fo"d§3 v [TdEnPy(Es L EN)

X TVcos®Ey
———cNI“’foﬂdé‘NsinN_zé‘Ncosz"é'N

G(N/2)G(v+1)
=I5 : (33)
7 /*G[(N/2)+v]
The first partial integral is 27 and the rest, except for the
last one, can be done with (30). These (N —2) partial in-
tegrals cancel the corresponding normalization factors.
The final expression in (33) is also valid for N =2. The
result for the second moment

(yz)ér/N (34)

can also be obtained independently from the constraint
(9) and the statistical equivalence of the channels. This
leads to the average value

__ #T/N
= E g+ G

We are now ready to compute the autocorrelation func-
tion of g

F(e)={q(E)q(E +¢))—{q(E)){q(E +¢))

2A(N—1)
N3N +2)

ﬁ2r\2
X
[(E—Ey)*+T?/4][(E +e—E,)*+T?/4)

(36)

or its normalized version

F(e) _ (E—E,)’+T?/4
. 37
S&)="F0)  (E4e—Ey?+T%/4 67

To obtain the general distribution of delay times Py(q),
the matrix element of Q for the Nth channel is again
used, as was done for N =2,3,4,

2r T T
PN(q)=f0 d¢f0 dEy - fo dEyd(qg —q,,cos*Ey)
XPy(Esy .. En) . (38)

Here the same cancellation described below Eq. (33)
occurs and all that remains in the last integration is the
factor cy, the & function, and sin¥ ~2£,. The result is
(N=3)

G(N/2) (l_q/qm )(N~3)/2
WI/ZG[(N—I)/Z] (qqm )1/2

Py(q)= . 39

Some of the properties of this function are described
below.

(i) Derivative (N =23)+ dPy(q)/dg =0. Thus the dis-
tribution is a decreasing function of g from its maximum
at ¢ =0 to its minimum value at ¢ =g¢,,. Moreover, for
N =5, dPy(q)/dq Iq,’l =0. Lower N values are exception-

al. For N =2 there is a minimum at g =gq,, /2; see (16).
Also, dPy(q)/dgql, =—(2q, )7? and dP,(q)/dql,
—— 0.

(ii) Limits Py—c when ¢—0 (N=2) and Py—0
when g —gq,, (N =4).

(iii) Second derivative: The condition to make the
second derivative zero (N 24) is given by the quadratic
equation

(N—4)N—2)

2
+
2. qg“+(N

—6)g+2q,,=0. (40)

For N =4 this equation becomes linear and the solution
q =3q,, /4 corresponds to an inflection point where the
second derivative changes sign. For N >4 there are no
real solutions of (40) so there are no inflection points and
d?Py(q)/dg*=0.

Incidentally, the same procedure used for the distribu-
tion of delay times Py (q) can be applied for obtaining the
distribution of amplitudes Py(y ),
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2T T T
PN(y)=f0 qufO dgg...fo dEyS(y —T'coséy)

XPN(§3"' 'vgN)
_ G(N/2)
(7T)2G(N —1)/2]
X(1—y2/T)N=372 (41)

The corresponding distributions for the reduced variables
y/T1% and q/q,, are well known in random matrix
theory since they describe the distributions for the
coefficients of the eigenstates and the squares of these
coefficients in a GOE ensemble of Hamiltonians. (These
eigenvectors uniformly cover the N-dimensional unit
hypersphere [33]. Asymptotically, for large N, P(y/
I''”2) tends to a Gaussian with zero mean and variance
1/N and P(q/q,,) to a x? distribution of one degree of
freedom with mean 1/N [34]. Moreover, in the same lim-
it, the correlations between the different channels tend to
vanish.

The above single resonance treatment will play a basic
role in the study of more complex situations, such as the
overlapping resonance case to be dealt with later. This
alone makes the effort worthwhile. In addition, however,
it is possible to actually implement the ensembles con-
sidered in the present section, or justify their use, either
by using different resonances in the same or different sys-
tems (in all cases shifting the energy scale so that the res-
onances are centered at E,) or by comparing the out-
comes for different channels in the same system for a
given resonance and energy. The second option will be
valid when a large number of channels is open, so that
the probability P(g)=P(Q,, ), referred to the ensemble,
is well approximated by the probability Pg,,.(q) of
finding the value g, irrespective of the channel, in a single
system. A statistical description of the outgoing channels
is indeed a possible definition of chaos in scattering sys-
tems [35].

The restriction to a fixed value for I' is clearly ap-
propriate for a given multichannel system at a fixed ener-
gy, but will generally be too severe in other cases. This
motivates the next subsection. We may say in advance,
however, that in the many-channel limit, the variable T"
ensembles and the fixed I" ensembles will give the same
results.

B. Varying width

We now consider a different type of ensemble in which
each y is chosen independently from a Gaussian distribu-
tion with zero mean, the distribution for each channel be-
ing the same since the channels are assumed to be statisti-
cally equivalent (for a recent discussion on this assump-
tion and its validity see [36]). The joint distribution for
all ¥ is thus a product of Gaussians with equal width.
Each set of N numbers y,,Y,,... determined in this
way will have, in general, a different value for the sum of
the squares, i.e., for the total width ' associated with
that particular member of the ensemble. Averaging the
expression (9), which now is not a constraint, over the en-
semble one finds, for the second moment
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(y2)=(T)/N . (42)

Noticing that the total width I', here a random variable,
appears in the denominator of the S and Q matrices and
that the statistical properties of this quantity are also of
interest, it is convenient to use the set of spherical coordi-
nates {£} described in Sec. III A 4. Since the reader is al-
ready familiar with the N-channel results and coordi-
nates, we shall directly describe the N-channel case
without recourse to induction.

Using (9) and (42), the joint probability density P({y})
is given by

e —NT/(2T)

T () /NN

It is independent of the angles. Since there is a one to
one relation between the y’s and the spherical coordi-
nates {&}, the joint distribution in the new variables is,
using the appropriate Jacobian, P({&})=P({y})T , [see
271,

P(YasVps---) (43)

e ~FN/(2(I'>)F(N—1)/2

P(T''\? ¢, ...
( 5 Qm(T) /NN

’ §N)=
N

X JIsin” "%, . (44)
J=3

Note that the width and the angles are independent vari-
ables. Integrating over I'!’2, one obtains for the angles
the same distributions considered in the fixed-I" case.
Thus, in general, any average will be computed first for I’
fixed and then the integral over I'!/? is carried out. The
1()(1'0)<§edure will be denoted by double angular brackets

By integrating over the angles and multiplying by the
Jacobian 1/(2I''/?), the marginal distribution for T is
found to be

e —TN/{r)rv—2/2
)= ’
(2({T)/N)¥2G (N /2)

which is a Gamma or ¥? distribution for N degrees of
freedom, as was to be expected from the start, since I" is a
sum of N? Gaussian variables with equal width. The
route we have followed, however, has the advantage of
showing explicitly the connection with the fixed-I" ensem-
ble.

Because of the additional integral over I', not all re-
sults of Sec. III A can be generalized in the form of sim-
ple expressions. The average value {{q ) ), for instance,
can be written in terms of cosine and sine integrals and
trigonometric functions. Since the general form is not
very illuminating, we shall report the simpler case where
E =E, (denoted by the subindex O in the average) that
also allows analytical treatment of arbitrary moments.
At resonance, the angle average with I' fixed takes the
form

(45)

G(N/2)G(v+1)
7 2G[(N/2)+v]

(g¥)o=(4#/T) (46)

By performing the I' average with (45) one obtains
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YG(v+1iG(N/2—v)
T 2G(N/2+v)

24N
(r)

In the limit N — oo, (47) is simply related to (46) by re-
placing in (46) T" by (I'). This is because the marginal I’
distribution (45) tends to a delta function centered at {I")
as N — 0, so the average of any property in the I'-fixed
ensemble calculated at I'=(T') is the same as that of the
varying-I" ensemble in the limit of many channels.

It should be recognized, however, that the statistical
assumptions involved (the transition amplitudes are treat-
ed as equivalent Gaussian independent random variables)
are only valid as a limiting case and that a realistic distri-
bution of I' will be characterized by a number of
“effective degrees of freedom” smaller than N [33]. How-
ever, since little is known about the general properties of
the delay time even under the present and somewhat ex-
treme conditions and since the results will be in any case
a reference for more realistic treatments, we shall in the
following assume the validity of the above strong statisti-
cal assumptions and concentrate for simplicity on fixed I’
ensembles.

({g")o)= 47)

IV. MULTIPLE RESONANCES

A. General properties of the delay time

To compute Q we use (2) and (4) to write the derivative
of S7 w1th respect to energy as
ds —id™

= i 48
dE z(E —E,—il,/2)? “8)

Then conditions (3) and (5) lead to

0=#3 AN /[(E —E,)*+T%/4)] (49)
A
for the lifetime operator, with the diagonal element
[Y(M]
=% T (50)
o= (B =R, rTi/a) 20

As shown by Lyuboshitz [7], this is precisely the struc-
ture obtained for Q from the general unitary S-matrix
model of Simonius [29], considering that the factors in
the numerator for the general Simonious model are not
the y’s but different functions, say a’s, that can be related
to the original ¢’s in a definite although somewhat intri-
cate way (see Eq. (10) in [7]). Since the new functions a
satisfy the same constraint as the original ¥ [Eq. (7)], one
may also regard (50), with a instead of ¥, as the starting
point for a statistical treatment.

If we further assume that all resonances are statistical-
ly equivalent and that the widths I') are fixed numbers,
the probability distribution in spherical coordinates (one
set of coordinates {&»} for each resonance) reads

PV, . {EM)=Py(LEDVY) - Py({E™Y)) (51)

and the distribution of g is now
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Py )= - fd{g‘“} d{£™)
[ 2 q(k)coszé-(l&)
XP({EV}, ..., (€M), (52)

where ¢M=(#T,)/[(E —E,)*+T3/4] is the maxi-
mum value of g allowed for the resonance A. This
distribution has characteristic function @ ,(k)
= f exp(ikq)Py ,(g)dq. Because of the assumed indepen-
dence of the resonances, the total delay time is a sum of
the independent stochastic variables O} as expressed by
(50). (The central limit theorem cannot be applied be-
cause neither the average nor the variance of these vari-
ables agrees.) Therefore @ N,,(k) is the product of the
characteristic functions <I>( k f exp(ikq)P\M(q) of
each resonance’s distribution P”‘) [The distributions
for the individual resonances ‘“(q) are given by (39)
with ¢q,, replaced by the corresponding A-dependent
quantity g{».] Accordingly,

n
S Indy . (53)
A=1

In®y , =

By expanding both sides in a Taylor series around ik =0
[i.e.,, In®(k)=3 2 o« (ik)" /V!], it is found that the cumu-
lants k., of the total delay time distribution are the sum of
the cumulants «M of the individual resonance distribu-
tions. In particular, the first three cumulants are equal to
the mean and to the second and the third central mo-
ments. They are simply the sum over the resonances A of
the results given in Sec. III for the isolated resonance
case. The autocorrelation function also takes the form of
a sum over resonances.

B. Many overlapping resonances

We now assume two further simplifications, which are
aimed at describing the regime of overlapping reso-
nances:

r,=r, A=12,...,n, (54)
I'>D. (55)

Here D is the mean spacing between the real part of the
resonance energies E,. This provides a model in the spir-
it of Ericson’s theory of cross section fluctuations [24,37].
That this is so can be checked by computing the “two-
point” moment ratio (S,,(E)S}(E+e))/{|S,(E)|?)
(ab) for the S matrix (2). The numerator is given by

(S, (E)SH(E +¢))
[y Plyid 1)
E,—E —il/2)0E,—E —¢+iT'/2)
_ 2—inl?
N(N +2)(D(g—il') *

In the last equality the angle integration has been per-
formed using (32) and the sum over discrete resonances
has been replaced by an integral over a continuous vari-

:2;’(

(56)
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able E;,
1
— 57
%"Dde*’ (57)

which is a good approximation because of (55). This in-
tegral can then be performed by contour integration in
the complex plane. For the ratio one obtains

<Sab(E) :b(E‘i‘E)) _ —ill
(1S, (E)*) e—ill ’
which has the dependence found in Ericson’s theory.

For the average of the delay time we find, replacing
sums by integrals in (50) and using (34),

(58)

—_h
(q)——ND , (59)

a well known result, which is actually independent of the
peculiarities of the model [38]. Notably, (g ) is indepen-
dent of the resonance width I' and depends only on the
mean resonance spacing D. This is essentially the result
obtained from the classical spectral property for bimolec-
ular collisions, which relates the delay time to the excess
state density associated with the interaction region of the
potential energy function [39]. In the limit of long delay
times, which one anticipates to be associated with reso-
nance scattering, (g ) is approximately the mean classical
transit time of the interaction region for a set of trajec-
tories. It is known that this mean has precisely the form
of Eq. (59) if N is interpreted as the number of states
below energy E on dividing surfaces that partition the in-
teraction region from the remainder of phase space and
D ! as the state density in the interaction region [40].

An arbitrary cumulant of the delay time distribution
can be readily obtained using the results of IV A and not-
ing, by examining tables of cumulants in terms of mo-
ments, that the vth cumulant for the A resonance can be
written as kKM= f (g!})", where the proportionality fac-
tor f,, depends on the order of the cumulant v, but is in-
dependent of the particular resonance A. The f, consist
of combinations of moments {y?*), j<v, which are
known [see (33)]. Here is a table of the first three factors:

S _ 1
fi r N’
— -2 4\ __ 22=2(N—1)
L=y = 1= )

, (60)
F3=T73{y®) =3(y" ) (¥ +2(y*)*]
_ 8(N—2)(N—1)
(N +4)N +2)N3 °

For large N the factors are simply proportional to N ~".
(Although no simple formula exists for the cumulants in
terms of moments and therefore for the factors f,, there
are “‘recipes” that can be used to generate the expressions
for an arbitrary order; see, e.g., [41].) Thus the sum
k,=3,k» can be replaced by an integral over ¢\ that
involves vth-order poles. The general result is obtained
by induction

J. G. MUGA AND D. M. WARDLAW 51

K, =f, 3 (@)
A

_ fHD)Y dE,
D J (E, —E+iT/2)"(E,—E —iT /2)"
_ 2n(v=2)Wf,

T [(wv—10pPDprt

A comparison is made next between the first three cumu-
lants [42] of the exponential, x> with 2p degrees of free-
dom, Gaussian, and 2present distributions (denoted, re-
spectively, as k®*P, kX', &% and k). The first cumulant,
the average, is set equal in all the distributions

(61)

= 4 CXP = 2: Gau:__h
K, =k7P=k¥ =k} ND - (62)

The second one reads

2
__ 2(N—1)h? o |
#DTNXN +2)" 2 ND |’

2
/p, kG =g2 | (63)

Ky

2
Ky =

_h_
ND

The variances of the Gaussian and the y? distributions
may be set equal to k,. This fixes the value of o2 for the
Gaussian and the parameter p for the y? distribution,
p=(N+2)7T/[(N —1)2D]. The third-order cumulants
are then

3
_(N—1)(N—2) 12h3 ep—r

STIAN+2) (N +4) 2Dr2N?’

2_ 2AN —1)(N +4) Gau
=N D(N T2 > K0

Thus, even though the X2 distribution is the closest one,
the dependence on N ~3 of k; makes the Gaussian (with a
vanishing third cumulant) a good approximation to P (q)
in the limit of large N and I"' /D. This will not be the case
in general. Note among other differences that the range
for the Gaussian is the full real axis, all other distribu-
tions, including the one derived here, being restricted to
the positive real axis. All except the Gaussian show some
asymmetry, as reflected by a nonvanishing third cumu-
lant. The exponential distribution, in fact, a y? distribu-
tion with p =1, reproduces the dependence of P(q) with
respect to (large) N but fails otherwise. For the y? distri-
bution, the number of degrees of freedom for large N is
2p—nl'/D~T/D.

The energy autocorrelation function takes in the over-
lapping limit the form

F(e)=(q(E)g(E +¢))—{q(E)){q(E+¢))

H

_h
ND
(64)

_#T? | 2AN—1)
D | NXN+2)
dE
Xf 2 2 :
[(E—E,)?+T?/4][(E +e—E,;)*+T?%/4]
_ | 2 —=1) Amr#’T
- , (65)
N%N +2) | D(e2+T?)
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a Lorentzian function that scales as N ~2 and whose half-
width T" corresponds to the width of the resonances.
Note that this expression does not depend on the energy
E and tends to zero for large . We conclude that Q,,, is
ergodic in that energy averages of g are equivalent to an-
gle averages of g (see Ref. [43] for a similar analysis of the
cross section). Dividing by F(0), we obtain the same
functional dependence found by Ericson for the cross sec-
tion,

F(e) _ 1

F(0) 1+4(e/T)?

Any conclusions about the ergodicity of other functions
of g, e.g., the energy autocorrelation function, require an
additional analysis, which has not been undertaken.

(66)

V. FLUCTUATIONS AND DOUBLE AVERAGING

Up to this point the positions of the resonance ener-
gies, i.e., the configuration or set of numbers {E, }, have
been assumed to be fixed for a given ensemble. In fact, in
the most general case one would consider S-matrix en-
sembles where these positions differ from one member of
the ensemble to the other. In the spirit of previous ap-
proximations, we shall restrict ourselves to ensembles
where the configurations (resonance energies) and the an-
gles (partial width amplitudes) are independent stochastic
variables. (See [44,36] and references therein for a
justification and applications of this approach. The
difference with these earlier works is that they make use
of a K-matrix representation of the scattering matrix,
while we deal directly with a properly parametrized S
matrix. However, in both ways unitarity of S is ensured
for all members of the ensemble.) In complex scattering
systems the distribution of resonance energy spacings is
usually assumed to agree with that for the spacings be-
tween the eigenstates of random real Gaussian orthogo-
nal matrices. The distribution of the ratio x of spacings
between adjacent levels to the mean distance D can be
given for most practical purposes by the Wigner distribu-
tion,

P(x)=(m/2)x exp(—mx2/4) . (67)

There are also correlations between nearest-neighbor
spacings expressed in terms of certain correlation
coefficients [44]. In our computations the Wigner distri-
bution is imposed and the first four of these coefficients
are approximately accounted for following the prescrip-
tion given by Hofmann, Richert, and Tepel [44]. This
method allows random sets {E,} to be obtained without
explicitly diagonalizing matrices, a forbidding task when
a large number of resonances is required.

The configurational average is thus to be combined
with the angle average described in the previous sections,
the latter being operationally associated with a channel
average. We shall assign the symbols @ and A, respec-
tively, to these averages. As discussed by Muga and
Levine [45], when two different averages are involved,
there are different types of fluctuations. For the auto-
correlation function A, essentially a fluctuation at two
different energies, we find, following the notation used in
[45] and with ¢ =¢ (E) and ¢'=¢q(E +¢),
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Ao =CA(qq’')—CAgCAq' , (68)
A A=C(AgAqg')—CAqCAgq’ , (69)
CA 4 =C[A(qq')—AqAq'], (70)
AyC=A(CqCq')—ACgACq', (71)
AAL=A[C(qq')—CqCq'], (72)

which are related by

Aps=ApA+CA, (73)
=A 4 C+AA (74)

and where @ denotes a configurational average and A
denotes an angle average. Equation (68) is the fluctuation
in a single dual CA ensemble where both angles and
configurations vary independently. Equation (69) de-
scribes the configurational fluctuation of angle averaged
values and Eq. (70) is a configurational average of the
fluctuations evaluated at a given configuration due to the
distribution of angles. Equations (71) and (72) admit in-
terpretations similar to Egs. (69) and (70) by reversing
the order of the averages. Note that CA =AC.

Even though configurational averages have theoretical
significance and may even be implemented by examina-
tion of different systems [1], experiments are more likely
to involve energy averages for a given system. These can,
however, have different origins: One possibility is that
the collisional wave packets are broad in energy so that
the experiment directly provides broad energy averages
(coherent mixture) or the wave packets are sharply
defined in energy and have a distribution of centroid en-
ergies (monochromatic incoherent mixture). These two
scenarios require different treatments [6] and involve
different fluctuations if a further average, for example,
over amplitudes, is performed. In the following we do
not explicitly restrict our analysis to one scenario or the
other, but do point out, in due course, how the order of
the angle and energy averaging determines whether the
coherent or incoherent case is being modeled.

The energy average &, in combination with A, leads to
the family of quantities

A =6A(qq' ) —EAgEAQ’ (75)
AA=6(AgAg')—EAgEAg’, (76)
6A;=6[Algq")—AqAq'], an
AyuE=A(EqEq')—AEqAEG', (78)
AAN=A[6(qq')—Eq6q'], (79)
which obey the relations

Apqa=ApA+ED, (80)

=A 6+ AAg . (81)

Different mathematical implementations of the energy
average are possible. We have used a Lorentzian of
width [ at half-height centered at E,

1 B
L(E";E; ,B)=— . (82)
( L B) 21 (E,_EL)2+ﬁ2/4
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This particular choice allows some of the integrals to be
done analytically and has been used elsewhere [6] for this
reason.

We have performed numerical computations of the
quantities (68)—(70) and (75)—(79) [the computation of
(71) and (72) is time consuming and has not been per-
formed] for fixed " ensembles with 30 channels N =30 in
the limits of (a) overlapping resonances I' /D =10 and (b)
quasi-isolated resonances I'/D =0.1. The intermediate
case (c) I'/D =1 has also been examined. The first ener-
gy of the configuration is always taken as E, =0 and q is
evaluated at E =nD /2, the approximate midpoint of the
energy range spanned by n resonances. In all cases D =1
(atomic units are used throughout), E; =E, and =10,
except where indicated. The number of configurations #n,
and the number of resonances n (see Table I) are chosen
so that a further increase does not significantly change
the results. The main findings are as follows.

(i) Energy and configurational averages give essentially
the same results for the autocorrelation functions when
combined with the angle average in all cases; see Figs.
2(a)-2(d). When normalizing each component, however,
the detailed structures of AgA(e)/AgA(0) and
ApA(e)/ApA(0) may be different [see Figs. 3(a)-3(d)],
even though in the total fluctuation depicted in Figs.
2(a)-2(d) the contribution of this difference is minimal.
The range of the energy average 3 is important in this
respect. A large 8 tends to wash out the configuration-
dependent features, while a small B will yield
configuration-dependent structure. For example, Fig. 4
shows the average 6. A q for a particular configuration at
different values of B in the case I' /D =0.1. The peaks at
B=0.01 clearly indicate the position of the resonances,
but, at B=10, 6 Aq is completely flat. Of course, while
the present model is built so that 8 can be arbitrarily
large, in real systems the basic hypothesis of indepen-
dence of resonance parameters with respect to energy will
be only approximately true in a limited energy range.

(ii) The normalized quantities CA ,(g)/CA 4(0) and
6A 4(e)/EA 4(0) (dashed curves in Fig. 3), accurately
agree in all cases (even for I'/D =0.1) with the normal-
ized autocorrelation function obtained analytically for
the overlapping limit Eq. (66). This means that the
decompositions in (73) and (80) are particularly suitable
to analyze the total fluctuations Ap 4 or Ag 4. In general,
these will consist of a universal Lorentzian component
plus a possible oscillating contribution from AgA or
AeA that will become increasingly important as the ratio
I' /D decreases. This is in practice useful to avoid the nu-
merical computation of the universal component.

(iii) A A is of importance for an experiment where the
delay time is obtained for wave packets of width 3. This
implies an energy average first. The ‘“global,” non-
parametrized, Q operator is energy conserving [46] and
thus the expectation values for given wave packets are
averages of the energy-dependent results weighted with
the corresponding probabilities of the different energies in
the packet of interest. Estimates can be easily obtained
by assuming the Lorentzian energy distribution (82). The
delay time for a packet with this energy distribution, in
an arbitrary entrance channel u, is
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FIG. 3. (a) Agy/Aes(e=0) (solid), ApA /AaA(e=0) (dot-
ted), and CA 4 /CA 4(¢=0) (dashed) versus /T for I' /D =10.
The dashed curve is not distinguishable from the solid curve on
the scale of the plot. (b) Agq/Aga(e=0) (solid), AgA /AsA
(e=0) (dotted), and A 4/6EA 4(e=0) (dashed) versus /T for
I'/D =10. (c) Same as (a), but for ['/D =0.1 and that the solid

and dashed curves are now distinguishable. (d) Same as (b), but
for T /D =0.1.

5387

10
e/l

FIG. 4. 6Agq (a.u.) versus £/T for a particular configuration
of resonances. I'=0.1 a.u. and D =1 a.u.; $=0.01, 0.10, 1.00,
and 10 a.u. (peaked solid, dashed, dotted, and straight solid
lines, respectively).

6q= [dE L(E;E,,B)q(E) , (83)

where g (E) is the energy parametrized value in (50). By
averaging over the angles,

:_ﬁ_ B+T
A Eq N %

(E, —E, ?+(B+T)*/4

(84)

For very broad packets B>>I" and a single resonance
(only one member in the sum), the packet moves freely
without being affected by the resonance. In this case the
delay tends to O as f— . However, when multiple reso-
nances are present a large 3 on the scale of the average
spacing D implies that sums can be substituted by in-
tegrals in (84), so that (59) is recovered, i.e., the delay will
depend on the inverse of the product of the average spac-
ing and number of channels. For overlapping resonances
I'>>D, (g) is an energy independent quantity, Eq. (59),
and AEq=(q).

Similarly, the autocorrelation function A 4& for wave
packets is

A(EqEq')—AEqAEq’

_ 2#4B+T)AN —1)
N?(N +2)

1
X
% (E, —E;)*+(B+T)*/4

X 1 .
(Ep+e—E, *+(B+T)*/4

(85)

Replacing sums by integrals in the overlapping limit the
autocorrelation function in (85) takes the same form as
for the fixed energy case Eq. (65) with I" replaced by
T'+pB. Indeed, if B+ T >>D, the substitution of integrals
for sums can always be done in (85) whether or not the
condition I" >>D is satisfied, i.e., also far from the over-
lapping limit. The fixed energy results are recovered as
B—0.

(iv) The averages CA g or 6 A q are in all cases equal to
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TABLE 1. First two cumulants (k,x,) and skewness coefficient (s) calculated for different ratios
I' /D in the dual @A ensemble. For comparison, the values obtained analytically for the single A en-
semble in the limit of overlapping resonances are also provided [quantities with superscript (0)].

(0) (0)

(0)

/D Ky, K Ky, K s=K3/13, s n, n
10.0 0.21, 0.21 0.0027, 0.0025 0.66, 0.65 20000 7500
1.0 0.21, 0.21 0.029, 0.025 2.16, 2.07 20000 2500
0.1 0.21, 0.21 0.37, 0.25 7.04, 6.55 27000 2000

the result predicted for the overlapping limit Eq. (59).

(v) The first three cumulants of the total lifetime distri-
bution at fixed energy E have been evaluated for the CA
ensemble. The results are summarized in Table I. Note
the increase of the second cumulant and of the skewness
of the distribution when I' /D decreases, as well as the
progressive deviation from the corresponding overlap-
ping limit results. It is possible to visualize approximate-
ly this distributions as follows: The exact expression is

P(¢)= [d{E,}P({E;,}P(q|{E;}) , (86)

where P(q|{E,}) is the conditional probability for hav-
ing delay time q in the configuration { E,}. The exact ex-
pression for P(q|{E, }) is unknown, but we can calculate
its cumulants by summing over the cumulants of the indi-
vidual resonances as described in Sec. IV A. The condi-
tional probability in terms of its cumultants takes the
form

S K, (ik)" /()

v=1

-1 —ikgq
P(ql{E,}) 2ﬂ_fdke exp (87)

If, for the purpose of obtaining a graphic representation,
third- and higher-order cumulants of P(q|{E,}) are
neglected, the integral yields a Gaussian

1 —(g —K;)2/(2ky)

e (88)

P(gl{E,})=

(27TK2)

FIG. 5. Approximate P(gq) versus g (a.u.) for I'/D=10
(solid), I' /D =1 (dashed), and I' /D =0.1 (dotted). The negative
tails should be disregarded.

This approximate result is then substituted in the integral
(86), which is evaluated numerically. The approximation
will be poor very close to ¢ =0, where large values of k
and therefore higher-order cumulants contribute in (87)
and allows for negative values of g, but gives a reasonable
pictorial view of the main features of the distribution
and, in particular, the tail of the distribution at large gq.
The results are shown in Fig. 5 for the following three
cases: (a) I'/D=10 (overlapping resonances) (b)
I'/D =0.1 (quasi-isolated resonances), and (c) I'/D =1.
Note that even though the third cumulants of the com-
ponents have been neglected, the approximate distribu-
tion may have nonvanishing third cumulants. Also note
that this approximation has not been used for the compu-
tations in Table I.

For case (a) Fig. 5 confirms that the distribution of de-
lay times is essentially a Gaussian distribution. For case
(b) we note that P(q) has a slowly decaying long-time tail
whose functional dependence on g is of interest (dotted
curve in Fig. 5). A double logarithmic plot (Fig. 6) re-
veals that the decay is algebraic P(gq)~gq % with
z~ —1.6. The origins of this behavior and of this partic-
ular value of the decay exponent are not apparent to us.
For a discussion of conditions leading to algebraic decay
of the population of (quasi)bound states in chaotic quan-
tum systems and a relation between such decay functions
and Smith’s delay time, the reader is referred to Ref. [10].
We emphasize that the decay functions considered in
Ref. [10] are not the same as the delay time probability

o..
//~
o — 1
~—
(A
c —2
7:'),
—4 : .
-2.5 -1.5 -0.5 0.5

FIG. 6. Double logarithmic plot of the decaying part of P(q)
versus ¢ (a.u.) for ' /D =0.1.
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distributions studied here. In classical chaotic scattering,
algebraic decay is associated with nonhyperbolicity aris-
ing from the presence of stable or marginally stable
periodic orbits in the interaction region.

VI. DISCUSSION

Some statistical properties of the delay time matrix for
ensembles of unitary, multichannel, S-matrix models
based on Breit-Wigner resonances have been examined
from single resonances to the limit of many overlapping
resonances, from few to many open channels, and from
fixed to varying resonance widths. Explicit expressions
have been obtained for autocorrelation functions, proba-
bility distributions, and/or cumulants that will serve as a
simple reference for understanding more realistic cases.
A key ingredient in preserving unitarity and allowing for
analytical results is the formal treatment given to the
independent-resonance assumption.

It is worth clarifying a common misapprehension: The
quantities examined, Smith’s delay times, are not decay
times of prepared states, although they are related to
them. The study of the decay of a prepared state involves
a broad wave packet in energy whose survival probability
(approximately an exponentially decaying function at in-
termediate times) is followed [47]. In general, the delay
time of such a packet, as defined by the expectation value
of Q, can be regarded as the difference between the in-
tegral over time of the survival probability with and
without interaction [46,47,10]. While the statistical na-
ture of the exponentially decaying survival probability is
due to the possibility of preparing many systems under
identical conditions, i.e., to ensembles of quantum
mechanical systems described by the same wave func-
tions, the dispersion of delay times in the present paper
refers to the average values of Q calculated for members
of ensembles of S matrices characterized by a variation in
the transition amplitudes, resonance widths, or resonance
positions.

Analytical expressions for the delay time probability
distribution have been obtained for a single resonance.
They tend, in the limit of large number of channels, to a
x? distribution with one degree of freedom. For multiple
resonances the time delay distribution can be character-
ized by means of its cumulants, which are obtained as the
sum of the individual resonance cumulants. Approxi-
mate analytical forms have been given in the overlapping
limit. A particularly good fit in this case is obtained by
means of a y? distribution with a number of degrees of
freedom proportional to I' /D and essentially independent
of the number of open channels N for large N values (a
Gaussian is also a good approximation for large N). N is,
however, the number of degrees of freedom assigned to
the ¥? distribution of the widths I' when the transition
amplitudes are treated as Gaussian-independent random
variables (Sec. III B).

In the overlapping resonances case, the Lorentzian ob-
tained for the autocorrelation function of the diagonal
elements of the delay time is a real function, as it should
be, because of the Hermiticity of Q. This Hermitian
property derives from the unitarity of S as shown by
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Smith [3]. In our derivation we have made use of as-
sumptions present in earlier models to describe “Ericson
fluctuations.” It is worth emphasizing, however, that no
version of the Ericson model for overlapping resonances
would lead to a purely real autocorrelation function.
Indeed, we have found that the autocorrelation function
for another simplified model proposed by Bauer, Mello,
and McVoy [6] is a complex quantity, because in that
model the unitarity of S is not ensured for all members of
the ensemble. The form found for the autocorrelation
function implies ergodicity in the sense that angle (transi-
tion amplitude) and energy (resonance position) averages
of the delay times are equivalent.

While most analytical results are obtained for an en-
semble where the “configuration,” or set of resonance en-
ergies, is fixed, the more general ensembles where the
configuration varies have also been numerically studied,
as well as the relations between configurational and ener-
gy averages when each is accompanied by an “angle”
average over the amplitudes. The presence of the two
averages (angle and configuration, or angle and energy)
leads to different partitions of the total autocorrelation
function. It has been found that one of the two com-
ponents (when normalized) is universal, i.e., under all
conditions examined (not only in the overlapping limit) it
is the same Lorentzian function, precisely the one pre-
dicted by Ericson for the cross section. This universal
component is the configurational (or energy) average of
the fluctuation of delay times due to the amplitudes. The
other component, a configurational (or energy) fluctua-
tion of quantities averaged first over the amplitudes, is
negligible in the overlapping limit, but can be of impor-
tance in other cases, yielding oscillations attributable to
the resonance structure. The same can be said qualita-
tively about the cross section (see Appendix B), with the
difference that the contribution of the oscillating com-
ponent appears, on the basis of numerical investigation,
to be much less important for the cross section. Thus the
delay time appears to be more sensitive than the cross
section to the underlying resonance structure. Energy
averages and configurational averages behave similarly in
most cases when combined with the average over ampli-
tudes (angles), provided the energy average is performed
over a large energy interval.
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APPENDIX A: EFFECT OF THE BACKGROUND

The most general S-matrix form compatible with a
simple pole includes a unitary “background” matrix S%
(22],
iA

- — Al
E—E,+iT/2 |’ Aab

S=S(E)=S%|1—
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where the term in large parentheses is also unitarity. We
shall assume that in the energy interval of interest, all pa-
rameters A and the background are energy independent.
If S is to be symmetric, the rank-one matrix
(S%4),, =v,8% is also symmetric. The phases can be
chosen so that ¥, =82 and thus (S%4),.=y,7.. How-
ever, unless S¥%=1, the y’s will generally be complex.
The constraint (9) takes therefore the form I'=3 [y, [?
and the expression for the delay time becomes

filyql?

= . A2
Qoo = [E—Eo P +T /4] (A2

This does not essentially modify our reasoning and con-
clusions in the main text. The ensembles are constructed
by a similar procedure: Now the moduli of the y’s are
homogeneously distributed over the hypersphere, while
the phases are randomly chosen between O and 27. This
involves an extra set of N independent random variables
(the phases) and integrations, but the final results for the
delay time distributions remain the same. The multiple
resonance case is generalized similarly.

(R (R, (), (K1) (A7), (1
Ya Vb Ya
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APPENDIX B: CROSS SECTION

The inelastic cross section is proportional to o =S, |?
(a##b). In this appendix, expressions for o, its average,
and its autocorrelation function are provided. n reso-
nances with equal width I" are assumed.

Using Eq. (2) one finds

(1) (A1, (1)
Y vy v

. (B
OT2 2 TR T /aNE —E, —iT/2)

Note that AS,, (a¥b) is zero, as well as 6S,, for large
enough B, i.e., we are dealing with a purely statistical
model, devoid of direct reactions. The averaged cross
sections accordingly describe only ‘“‘compound” process-
es, without a “direct” contribution from rapid processes.

The angle average gives zero unless A=A'. Using the
distribution (32) we find

Ao=k,Y, . (B2)
See (B5) and (B7) below for the new notation. To evalu-

ate autocorrelation functions the product

vy s My

00'=0(E)g(E+e)=3 33
N S S

is required. The angle average will again give zero unless
the resonance indices are at least pairwise equal: The
possible terms are (A=A, A'=A"", AFA"), (A=A",

=A", AFEN), (A=A, A=A", AFA'), and
(7» A'=A"=\""), each of which requires separate treat-
ment.

Combining all terms, the autocorrelation function A 4
(this symbol and similar ones containing A in the present
appendix refer to cross section fluctuations) can be writ-
ten as

Ay=A[o(E)o(E +e)]—Ao(E)Ad(E +¢)
1Y, ()2+|Y5(e)|?]+ Yy(e)k,—3k2), (B4
where
2
ki =Alyivi)= NN (B5)
— g h ort
k=AY = NN T 20N + 0N +6) B6)
1
Y, = , (B7)
‘2L, T
1
Y,= , (B8)
? 2;:’[(E—Ek)2+I‘2/4][(E+s—El)2+1‘2/4]
_ 1
Y3—§(E—E}\+iF/2)(E+e-—EA+iF/2) ’ B9
1 (B10)

Y= 2 G E, —iT/20(E +e—E, +il/2) ~

The overlapping limit is obtained by replacing sums by
integrals, as in (57). The normalized autocorrelation

(B3)

(E—E,+iT/2(E—E},—il'/2E +£——E}: +iT/20E+e—E} —il/2)

[
function for the cross section A 4(e)/A 4(0) is then found
to be the same Lorentzian as for the delay time Eq. (66).

In general, it is not possible to replace sums by in-
tegrals in (B4) unless an additional average over
configurations or energy is performed. (We shall discuss
next the @ average, but the same results are valid for &.)
The effect of the average @ on A 4 is actually equivalent
to the replacement of sums by integrals. This makes the
term proportional to |Y;|? vanish. Since the energy
dependence of the remaining terms is Lorentzian, the
cross section fulfills the same property found for the de-
lay time, namely, that the normalized quantity
CA 4(e)/CA 4(0) is a Lorentzian [Eq. (66)], for any value
of the I' /D ratio.

Indeed the results for the normalized components are
completely parallel to the delay time since the other com-
ponent of the dual ensemble fluctuation is given by

ApA=C[Ac(E)A(E +¢)]—CAc(E)CA0(E +¢)
(B11)

=k2{C[Y,(0)Y,(e)]—CY,(0)CY,(e)} ,  (B12)

which, up to the constant k,, is the same as for the delay
time result. Thus ApA(e)/AeA(0) is the same for the
delay time and the cross section. Of course the agree-
ment with the delay time functions need not be found for
CA 4(€)/Ae4(0) or ApA(e)/Ap4(0). The latter quanti-
ty is found (via numerical calculation) to be much smaller
than the former for the cross section, so that the total
normalized cross section fluctuation Ap4(€)/Ae4(0)
=CA 4(e)/Ap4(0)+ApA(e)/Ap,4(0) is actually coin-
cident with the Lorentzian (66) in all cases examined.
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